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Abstract

Networks of coupled dynamical systems have been used to model
biological oscillators' 34, Josephson junction arrays® 5, excitable
media’, neural networks®*!°, spatial games'!, genetic control networks'
and many other self-organizing systems. Ordinarily, the connection
topology is assumed to be either completely regular or completely
random. But many biological, technological and social networks lie
somewhere between these two extremes. Here we explore simple
models of networks that can be tuned through this middle ground:
regular networks ‘rewired’ to introduce increasing amounts of disorder.
We find that these systems can be highly clustered, like regular lattices,
vyet have small characteristic path lengths, like random graphs. We call
them ‘small-world’ networks, by analogy with the small-world
phenomenon'®"* (popularly known as six degrees of separation's). The
neural network of the worm Caenorhabditis elegans, the power grid of
the western United States, and the collaboration graph of film actors
are shown to be small-world networks. Models of dynamical systems
with small-world coupling display enhanced signal-propagation speed,
computational power, and synchronizability. In particular, infectious
diseases spread more easily in small-world networks than in regular

lattices.
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FR HELY 3 24 7|'H - Node centrality
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T2 UHESRZ EM 7| - Network structure
Size 100
> Etad] 9/340] ObLl 9|4 TE Thoto| TR Radius 6
v Size Clustering coefficient 0
v' Radi
ad us_ . Degree assortativity -0.143
v" Clustering coefficient
v Degree assortativity Mean / STD of degree 1.98 / 1.68
v Mean / STD of node centrality Mean / STD of betweenness 345 /731
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Introduction

Z2 HES3 2M 7| - Network structure
> Radius
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F2 HES3 &M 7| - Network structure

» Clustering coefficient
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2 HES3 M 71H - Network structure

» Clustering coefficient
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Low clustering coefficient
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Z2 HE3 EM 7| - Network structure

> Degree assortativity
v MEAZE LEYO degree AZHEHA|

Low degree assortativity network

High degree assortativity network
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FR U ER3 24 7|'H - Community detection
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High density community

Low density community Party network for users who have joined party more than two
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Real Money Trade (RMT)
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Yin and Yang of RMT

> Reasonable economic activity
» Key measurement for the popularity of an online game

» Contributions to a game’s economic success and longevity
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Yin and Yang of RMT
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Yin and Yang of RMT

» Gold Farming Groups (GFG) involve in RMT
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Why is RMT analysis is so important in game industry

» RMT volume can be used as a key measurement for the popularity of an online game
» Tracking the transactions of RMT can detect illegal users

» Analyzing RMT consumers makes it possible to find potential paying users

Illegal o Potential
player Key indicator Paying user
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Challenges

> We can not trace currency flow in the real-world

P. > a Virtual world

$5-85 ‘ Real-world
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Challenges

» Inanon-line game, users conduct transactions for various purposes

> Itis not easy to distinguish RMTs from normal item delivery transactions

P. > a Virtual world
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Key idea

» Surely, it is not easy to identify RMT with a single transaction

> But, take a step back ...

Gift? or RMT?
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Buyer? or Seller?
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Key idea

» Surely, it is not easy to identify RMT with a single transaction

> But, take a step back to look at the big picture
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Key idea

> Focus on trades between communities, not users

» Focus on identifying the characteristics of communities, not users
Provider community
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Construction of a virtual currency trading network

» Extracting only one-way trading logs and aggregating it on a weekly basis

» Constructing directed and weighted trading network

v" Nodes: game users
v Edges: virtual currency trades between nodes
v" Weight: trade count
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Community detection

» Finding community structures in the constructed network
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Community detection

» Tracking transactions between communities
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Community network analysis

» Provider and consumer communities are detected by analyzing community characteristics

v Network structures
In-game activities related with production and consumption of virtual currency
Payment amounts for the game company '
Play style of members in communities

NN
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Consumer community

» Absorbing virtual currency of inter-community trading

> Scale-free network like social media (Facebook, Twitter)

®

Community-based User-based
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Provider communities - Gold farming groups

> Star-shaped network

> Highly specialized organization for efficiency

Merchant
characters

Farming characters
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Provider communities - Arbitrage groups

> One-way chain network

» Extremely decentralizing communities
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Provider communities - Arbitrage groups

>

>

Possession of the largest amount of assets
Repeating buy and sell items with a profit margin in the virtual world

Using multiple accounts to evade in-game tax and suspicious transaction monitoring

by game company

2 & .. R

Buy items Sell items Sell items

A B ) ecececeoe C

Transfer all assets
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Community grouping by network structure

» Extracting the characteristics of community structure

v

RN NN

Mean / std. of degree

Mean / std. of betweenness
Degree assortativity
Clustering coefficient
Radius

Community size

A
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Community grouping by network structure

» Extracting the characteristics of community structure

v' Mean / std. of degree

v' Mean / std. of betweenness

v' Degree assortativity

v" Clustering coefficient

v' Radius

v Community size

Degree Betweenness
Community ID J Degre'e‘ Radius Size
mean std mean std Assortativity

1 13 0.57 0.3 0.57 -1 1 5
2 16 0.89 16 2.3 -0.67 1 14
3 2.25 144 107.4 1500.9 -0.83 2 213
4 2 0 117.2 309 0 16 32
5 2.29 443 3294 14163 -0.12 9 1033
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Community grouping by network structure
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RMT estimation

> Transactions between provider and consumer communities are filter out as RMT

> Total volume of RMT estimated ~ 60M USD for a year

Provider
community

Consumer
community
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Summary
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v" Node centrality

Degree, betweenness, closeness, -
v" Network structure

Density, radius, clustering coefficient, degree assortativity, -
v' Community detection
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> Representation learning for network structure

v" Node2vec
» Centrality
=  Community detection

v Graph Convolutional Networks
» Network structure
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